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First-order transition in a particle deposition-evaporation model
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We introduce a simple stochastic growth model where particles of two different species are deposited and
evaporated. In the model, a randomly chosen particle of two species is deposited gh andta particle on
the edge of the plateau of the interface is evaporated at a rafe Whenp<p.;=0.4985(2) andh>p,,
=0.501%5), thevelocity of the interface is zero. Whem.;<p=<p,,, however, the interface grows with a
constant velocity. At bottp.; and p.,, the velocity of the interface changes from zero to a constant value
discontinuously. The first-order transitions in our model are related to a nonequilibrium phase transition from
an active to an inactive phase at the bottom layer of the interface. Interestingly, the first-order trangition at
is triggered by the combination of the parity conserving and the directed percolation dynamics. We explain
why the transitions in our model are of first order. Moreover, our model shows two nonequilibrium roughening
transitions ap.; as well as ap,[ =0.444(2).
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For last several years there have been many studies abastzero in the active phase of DP or PC, but it is nonzero in
the nonequilibrium binding-unbindingBU) transition of a  the inactive phase. In most of the models, the BU transition
growing interface in a + 1 dimensional system, via stochas- is a continuousone.
tic growth modeld1-4]. These models show a nonequilib-  Recently, there have been a few studies about a first-order
rium BU transition from a phase where the interface is boundBU transition[13,14. In those studies, a hard-core wall at
to the wall to a moving phase where the interface becomezero height is introduced and a first-order BU transition takes
unbound. At the BU transition, the velocity of the interface place because of the binding force between the interface and
changes from zero to a nonzero value. Often the BU transithe wall. To our knowledge, in all models where the growing
tion is accompanied by a nonequilibrium roughenitNR)  interface does not interact with the wall, BU transitions were
transition. The NR transition in4+1 dimensions is an inter- continuous transitions. However, as we are going to show in
esting phenomenon because the interface under thermal eqtite present paper, the first-order BU transition can occur
librium in 1+ 1 dimensions is always rough and thus doeseven in the case where there is no interaction between the
not exhibit a roughening transition. In higher dimensions,interface and the wall. To this end, we introduce a simple
however, the interface under thermal equilibrium can un-growth model exhibiting a first-order BU transition. In our
dergo a roughening transition at a certain critical temperamodel, there is no interaction with a hard-core wall at zero
ture. height. Rather, it turns out that the first-order BU transition

The BU or NR transitions studied in Reffl—4] are in our model originates from the combination of the PC and
known to be related to phase transitions into absorbindP dynamics.
states, which belong to the directed percolatib®) [5—7] Our stochastic model is defined as follows. Initially there
or the parity conservingPCO) universality clas§8-12]. For  is no particle in the system, i.e., the interface is flat. Each
example, in the growth model introduced by Alon, Evans,time, either deposition or evaporation of a particle occurs at
Hinrichsen, and Mukamd&the AEHM mode] [1], some fea- a randomly selected site. Then deposition and evaporation
tures of the BU transition are known to be related to DP. Intakes place at ratgsand 1-p, respectively. In the deposi-
the dimer deposition-evaporation mod&l, however, some tion process, amA or a B particle is deposited with equal
features of the BU transition are known to be related to PCprobability. The interface height at a sités represented by
In above two models, an absorbing transition in the DP or then integer height variable, . In our model, three restrictions
PC class emerges at a particular reference height of the irare imposed. One is the restricted solid-on-solid condition
terface, i.e., at the bottom layer of the interfdtiee level of  |h;—h;,4|<1, which is imposed at all sites in the deposition
minimum height. More specifically, the sites touching the and evaporation processes. Another restriction is that a par-
bottom layer correspond to the active sites of DP or PCticle can evaporate only at the edges of plateaus of the inter-
Therefore, in the active phase of DP or PC, the interfacdace. Finally, we assume an infinitely strong repulsive inter-
fluctuates close to the reference height so that the interface action between two nearest-neighbor particles of different
smooth and bound at the bottom layer. On the other hand, ikind in the deposition process. For example, the deposition
the inactive phase of DP or PC, the interface detaches froraf an A particle at a randomly selected site is not allowed if
the reference height and evolves into a rough state. A conthere is at least on® particle among the three nearest-
mon feature of all models showing the BU or NR transition neighbor sites of the deposited particle after deposifsme
is the change of the velocity of the interface depending orFig. 1). The dynamic rule of am\ particle in our model is
the deposition rate of a particle. The velocity of the interfacesymmetric with respect to that ofaparticle and vice versa.
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FIG. 1. Schematic representation of the stochastic growth rule > 0005} / 0 ! 5
of the model. A black particleA particle cannot be deposited at a . ¢ : T
randomly selected site if the particle touches a gray partiBle ( 0! :
particle after deposition. A gray particle also cannot be deposited at 0k ,,,,,,,Q,,f,,,‘i ,,,,,, e +
a randomly selected site if the particle touches a black particle after 5
deposition.
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Without the repulsive interaction, the growth rule of our B4 0M4 046 048 05 052

model becomes the same as that of the AEHM model.

If the deposition rate of a particlg, is very small, only
few deposited particles can stay on the substrate for a short FIG. 2 Plot of the velocity qf the interface, vs _deposition rate
lifetime before evaporation. Therefore, the interface does ndtf @ particlep, for the system size =1024. Wherp increases from
grow, i.e., it is bound to the substrate. Asncreases, more 0_ to 05 the velocity of the interface jumps from 0 to 0.007 638
particles stay on the substrate and form large islands. Whendiscontinuously ‘atpe, (=0.4985). However, wherp decreases
exceeds the critical valye,,, the interface detaches from the oM 0-5 t0 044, the velocity decreases continuously from 0.008 at
substrate and grows with a constant velocity. However, beE’:O'5 to 0 atp=0.444, showing a history dependent behavior.
cause of the interaction the interface can only detach if the
bottom layer is completely covered by particles of a singlesured the velocity of the interface by continuously decreas-
species such a&AA. - -AAAor BBB: - -BBB. After all the  ing p from 0.5 after the velocity saturates to a constant value
sites of the bottom layer are filled completely with one kindat p=0.5. We found that the velocity decreasemtinuously
of particles, deposition as well as evaporation of particlesrom 0.08 atp=0.5 to 0 atp=0.4442). Therefore, the ve-
does not occur anymore at the bottom layer. In that case, tWicity exhibits a history dependent behavior, confirming that
symmetric states at the bottom layehAA---AAA or  the BU transition is of first order. The first-order BU transi-
BBB- - -BBB, can be interpreted a&-symmetric absorbing  tion originates from the fact that the dynamics of the grow-
states. _ ing interface is different at the bottom and the other layers.

If deposition and evaporation occur only at the bottoma the BU transition poinp,,, the growth of the interface is
layer, the dynamic rules in our model would resemble thOS e cteq by the PC-type growth at the bottom layer and the
of a model withZ,-symmetric absorbing states, which is g, nression effect of the heaped particles on the bottom
known to belong to the PC cla$32]. However, after the layer, where the heaped particles are made by the DP-type
b°“9m layer has bee_n completely filled withparticles B growth process. These two effects hinder the interface from
particles, only A particles @ particles can be deposited rowing. However, as soon as the bottom layer is filled com-
because of the interaction between nearest-neighbor pag- g ; . y .

letely with one kind of particles, the velocity of the inter-

ticles. In that case, the growth rule in our model becomes th ; .
same as that of the AEHM model showing DP dynamics at ace is governed by the DP-type growth process in the same
way as in the AEHM mode[1]. The deposition rate of a

particular reference height. From now, we will denote the . i . )
AEHM model type of growth process as DP-type growth angParticle atpclils [arge enough.for the interface to grow with
the growth process related to the PC dynamics at the refef large velocity if the growth in our model takes place only
ence height as PC-type growth. In our model, the dynamic8Y the DP-type growth process. We found that, from the
of the growing interface is affected by the PC_type growth atcomputer simulations Starting from the initial condition com-
the bottom layer, but it is affected by the DP-type growth atpletely filled with A particles below bottom layer, the veloc-
all following layers. ity of the interface is nonzero fqr>p, [ =0.444(2)]. More-

We carried out Monte Carlo simulations for our model. over, the velocity follows the upper velocity curve in Fig. 2
We measured the velocity of the interface by changing théor p>p, and increases continuously unfi= 1. This fact
deposition rate from O to 1. For smalp, the velocity of the again confirms that our model shows a first-order phase tran-
interface is zero. The velocity maintains zero um#p.;  sition atp.;. Therefore, the coexistence of the DP- and PC-
=0.498%2). However, the velocity is nonzero fgg,;<p  type growth processes generates the first-order BU transition
<p>=0.5015(5) and again becomes zero [io¥ p.,. Here  in our model.
the velocity of the interface is defined a%(t) In order to support this interpretation, we measured the
=(1L)=_,[hi(t)—h;(t—1)], whereL denotes the system vacant site densitp(p,t) at the bottom layerp(p,t) has a
size. A surprising feature is that the velocity suddenly jumpdinite value forp<<p.; andp>p,,, but it decreases to zero
from zero to a nonzero constant value, exhibiting a first-exponentially forp.,,<p<p. as the time increasetsee
order transition ap.; (see Fig. 2 In order to check whether Figs. 3 and % At both p.; andp.,, p(p.t) decays algebra-
this unexpected transition is really of first order, we mea-ically as time increases. Atp.;, p(p.1,t) scales as
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FIG. 3. Plot ofp(p,t) vst in double logarithmic scales for the FIG. 5. Plot ofpg(pc1,t) vstin double logarithmic scales for
deposition ratep=0.4975 (top), 0.4985( p.,), and 0.4965(bot- the system sizek =64, 128, 256,512, and 1024. The slope of the
tom). The data were obtained for the system 4ize1024. The line  dotted line isB/1=0.285. Inset: Plot opg(p.1) vs L in double
obtained from the least squares fit has the sigpe =0.2852). logarithmic scales for the system sizes- 64, 128, 256,512, and
Inset: Plot of p(pes,t) Vst in double logarithmic scales for the 1024. The line obtained from the least squares fit has the slope
system sizes =64, 128, 256, 512, and 1024 at the critical point /v, =0.442).

Pei-

both p<p.; andp>p.,. We found that the velocity of the
p(Per,t)~t A, (1) interface is nonzero g, for a system with finite size. How-

ever, we found that the velocity decreases gradually as the

From Monte Carlo simulations for different system sites SyStem size increases. We believe that the velocity will be-
=64-1024, we measureig,cl (=Blv))=0.2852), which is come zero in the limit — o0 at p.,. Therefore, the BU tran-

in excellent agreement with the value expected in the Pé't'\?\;‘efggéi;ﬁzgt,)[ﬁeazgtgnfgft 3;?;& ) that is av-
class, 0.28) [7]. We also measured the vacant site density, Lo oo e with at Ie);st one v%éént site at the bot-
p(p,t) at the bottom layer ap.,. From Monte Carlo simu- 9 e .
! . e tom layer. The density decays as in E#) before the satu-
lations for different system sizels=512-4096, we mea- . : .
o i ration time 7(t<7) and has a finite value fot>7. The
sured5p62—0.50(1)(see Fig. 4. From these results, we can

: ) ) stationary value opg(p.1) depends on the system sikeas
conclude that the interface in our model grows with a CON-, (pey)~L #/. We obtained/v, =0.482), which is in

stant velocity only in a very narrow regiomc<p<pc2-  relatively good agreement with the expected value from the
From the study of the densify(p,t), we know that the ve-  pc clasgsee Fig. 5, 0.5[7].

locity of the growth interface should be zero in our model for  Next we considered the interface fluctuation widthpat

which is defined byW(L,t)=(L~9%,[h;(t)—h(t)])¥2 The

1 —— width W(L,t) scales as

té7 if t<L?
LY if t>LZ

W(L,t)~ 2

Hereh andd denote the mean height and the substrate di-
mension.{ andz are called the roughness and the dynamic
exponents. Afp.;, the roughness exponent is measured as
{=0.43(2) [see Fig. 6a)]. The interface in our model is
smooth forp<p., i.e., {=0, but it is rough atp;;. The
value of the roughness exponent jumps from 0 to 0.43 dis-
0 1 2 3 4 5 6 continuously atp.;, showing a roughening transition. This
Int result differs from the one obtained from well-known growth
models, which show PC- or DP-type dynamics at the refer-
FIG. 4. Plot ofp(p,t) vst in double logarithmic scales for the €Nnce heighf1,3,4. In all those models, the roughness expo-
system sized =512, 1024, 2048, and 4096 at the critical point Nent exhibits a marginal behaviaf=0, at the critical point
Pe2 (=0.5015). The line obtained from the least squares fit has th@.. The value of the roughness exponent increases continu-
slopeB/v=0.5Q1). ously asp increases fronp.. Therefore, those models ex-

Inp (p,,.t)
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FIG. 6. Plot of the saturated widtW? vs the system sizk at Otmos weocmmod m oocheno smos 10 mon oy
p.1 in double logarithmic scales for the system sizés 0 30 100 150 200
=64,128, 256,512, and 1024) and the saturated widtW? vs p X
for the system siz& =700 (b). In Fig. &a), the slope of the dotted
line is {=0.432). In Fig. 60b), the saturated width increases wjth 1400 . : : .
and the value of the width becomes larger near(=0.4985) than
at p¢;. This anomalous behavior originates from the finite size ef- (b)
fect. If system size is very large, the width of the interface mear 1380} i
will become smaller than gi;.
= 1360¢ 1
hibit the NR transition from a smooth phase witk0 atp. o
to a rough one withi>0 for p>p.. = 1340} ]
We found via computer simulations that the width of the *WMWW*
interface in our model seems to be larger Br p.,, where 1320 _
p is nearp.s, than atp; in the case of small system sisee
Fig. 6(b)]. But this is a finite size effect. The width of the 1300 . \ , .
interface will always become smaller and the value of the 0 200 400 600 800 1000
roughness exponent will always become 0 et p,, if the X

system size is very large.

We measured the values of the growth and the roughness S

exponents ap,=0.444(2) by carrying out computer simu-
lations starting from the initial condition completely filled

Pl (c) I

with A particles below the bottom layer. The roughness ex-
ponent can be also obtained from the height-height correla-
tion function C(x)={(h; . x—h;)?)¥2~x¢, which should be >
measured after the interface width reaches a steady state. We\>_</
found that the interface width increases\/aa)~(lnt)ﬁ' un- =
til it reaches a constant value. We also found that the height-

t)

height correlation function follow€(x)~(In x)g'. Thenpg’

and ¢’ are about 0.47 and 0.45 @ (see Fig. 7. These
logarithmic behaviors suggest that 0. We also found that
{ increases continuously gsdoes fromp, to p;; and be-
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FIG. 7. Plot of the widthw? vs t (a) and the height-height
fluctuation widthC? vs x (b) in double logarithmic scales for the
system sizd.=4096. The data were obtained @t. In Fig. 7(a),
the slope of the dotted line 8’ =0.47. In Fig. Tb), the slope of the
dotted line is¢’ =0.45.

FIG. 8. Snapshots of the interface fo= 0.4 (a), 0.5(b), and 0.8
(c). In this figure, the system sizes dre- 200 in(a) andL = 1000 in
(b) and(c).

comes 0.43(2) atp.;. Therefore, there occurs the NR
(smoothing transition atp,=0.444(2) in our model if we
decrease from 0.5 to O continuously after the width of the
interface reaches a constant value.

Consequently, our model shows various morphological
changes ap increases from 0 to 1. F@<<p.,, the interface
is very smooth. But the interface becomes rougpat The
interface becomes rougher than@t asp increases from
Pc1 10 peo. FOrp>pe,, the interface has a shape like a line of
pyramids. We draw typical interface configurations for vari-
ousp in Fig. 8.
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Recently, two growth models, which are related to the PGsites of each other. This rule leads to the suppression effect in
universality class at the reference height, were introducedhe PK model and a very strange dynamical behavior that is
One is the model introduced by Park and KahidK) [3]. different from the PC dynamics. In the H@odel, the PC
The other is the model introduced by Hinrichsen amdb© dynamics is satisfied at each layer of the growing interface.
(HO) [2]. In the PK model, the dynamics of the particles at Therefore, in this model there is no strange behavior such as
the bottom layer hag,-symmetric absorbing states if any the suppression effect.
deposition of a particle above the bottom layer is not al- In summary, we have introduced a simple growth model
lowed. When the deposition of a particle above the bottonexhibiting two first-order BU transitions. The first-order BU
layer is allowed, however, their model shows very differenttransition atp.; occurs because of difference in the growing
dynamics from the PC dynamics even at the bottom layerdynamics between the bottom layer and other layers except

On the other hand, the HBodel, where the dynamics of the the bottom layer. In the bottom layer, the growth of the in-

particles at the bottom layer also follows the PC dynamicst€rface in our model is related to the PC-type dynamics. In

shows the same dynamics as that of the PC dynamics whéjiner layers except the bottom layer, however, the growth
the deposition of a particle above the bottom layer is al-dynamics is related to the DP-type dynamics. We measured
lowed. Park and Kahng argued that the unexpected behavid?€ roughness exponefiat the BU transition poinp;. We
may be related to the fact that the dynamical processes 4und that the value of is 0.432). The value of the rough-
lower levels are strongly suppressed by the particles €SS exponent jumps from O to 0.43mY discontinuously
higher levels. In particular, kinks between different specied@cause of=0 for p<p;. Therefore, our model shows a
of particles may become frozen when they are covered witfionequilibrium roughening transition at,;. We found that
another layer of particles. The growth rule of our modelOUr model also shows another _flrst-orde_r_BU transition at
seems to be similar to that of the PK model, but there exist®c2- Our model shows a smoothing transitionpatwhen p

no frozen effect blocking the dynamics of the interface at thedecreases from(>p;) to O continuously after the width of
bottom layer. In our model, a particle cannot be deposited de interface reaches a constant value.

a site if at least one different kind of a particle exists at its

nearest-neighbor sites after deposition. In the PK model, This work was supported in part by the Korean Science
however, two different kinds of particles or two same kindsand Engineering FoundatioiOSEF and the Ministry of

of particles can locate conditionally at the nearest-neighboEducation through the BK21 Project.
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